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Abstract--In all chromatographic systems that achieve separation of colloidal particles based on the 
particles' hydrodynamic behavior, there are partitioning mechanisms that promote lateral migration of 
particles across solvent streamlines. In this work, solvent inertia and particle electrostatics are incorpo- 
rated in Brenner & Gaydos' general diffusive transport theory for particles and solvent flowing in a 
capillary, yielding the mean axial velocity of particles as a function of particle size. A comparison is made 
with capillary hydrodynamic chromatography results. The lateral migration of small particles is primarily 
due to diffusion, while large particles are focused by the inertial force at one equilibrium radial position, 
as observed in "tubular pinch" experiments. The transition from diffusion- to inertia-controlled lateral 
migration can be tuned to specific particle size ranges through variation of solvent ionic strength, flowrate 
and capillary radius. Poor prediction of the separation behavior of large particles is attributed to 
inaccuracy in the calculation of the inertial radial velocity, suggesting the need for further theoretical 
analysis and experimental study of inertial migration. 

I N T R O D U C T I O N  

The flow of suspensions of particles, drops or bubbles through narrow ducts is of central 
importance in many areas of science and technology. One application is the characterization of the 
size, chemistry and polydispersity of colloidal particles through the use of chromatography. Given 
the diversity of colloidal phenomena, a variety of chromatographic techniques have been 
developed; these are reviewed by McHugh (1984). The focus of this work will be on those 
techniques that utilize the particles' hydrodynamic behavior, known generically as hydrodynamic 
chromatography (HDC). 

DiMarzio & Guttman (1969, 1970) originally suggested that chromatographic separation could 
be achieved solely due to particle hydrodynamics. This proposal was brought to fruition in the 
experimental work of Small (1974), who coined the term "hydrodynamic chromatography". 
Subsequent theoretical work modeled Small's packed-bed chromatographic column as a bundle of 
parallel capillary tubes. Such models naturally suggest the use of a single, narrow capillary tube 
as the chromatographic column. This technique, called "capillary hydrodynamic chromatography" 
(CHDC), was implemented by several groups (Mullins & Orr 1978; Brough et al. 1981; Noel et 

al. 1982; Tijssen et al. 1983). However, no complete theoretical analysis of CHDC, including 
particle diffusion, fluid inertia and electrostatic force, has yet appeared in the literature. 

The separation mechanism of CHDC can be rationalized in terms of the lateral migration of 
particles across the capillary. As a particle is convected down the capillary by the solvent flow, it 
is also subject to Brownian motion, causing the particle to sample radial positions and streamlines. 
Due to the particle's finite size, it cannot sample the streamlines closest to the wall and consequently 
moves at a rate faster than the average solvent velocity. Larger particles sample fewer slow 
streamlines and are eluted before smaller particles. Brenner & Gaydos (1977) show that particles 
sample radial positions not at random but with a probability given by a Boltzmann distribution 
which depends upon the external forces acting on the particles. The Brenner-Gaydos theory 
provides the foundation for the analysis of packed-bed HDC as realized in the work of Stoisits 
et aL (1976), Silebi & McHugh (1978), Prieve & Hoysan (1978) and Nagy et al. (1981). 

Noel et al. (1982) and McHugh (1984) have speculated as to the nature of lateral migration 
mechanisms active in CHDC. Differences in the elution characteristics of particles with 
radii ~ 1/~m lead to the hypothesis that the lateral migration of small particles is diffusion 
controlled, while the migration of large particles is controlled by fluid inertia. Inertial effects are 
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the cause of the "tubular pinch effect" first reported by Segr+ & Silberberg (1962a, b). Saffman 
(1956), Brenner & Happel (1958) and Bretherton (1962) have shown that there can be no lateral 
migration of large (non-diffusing) particles across undisturbed solvent streamlines if solvent inertia 
is neglected. Early theoretical analyses of inertial migration, reviewed by Leal (1980), concentrate 
on particle lateral migration in Couette or parallel-plate geometries. Cox & Brenner (1968) present 
a solution of the Navier-Stokes equation for a single particle carried by' flow in a duct: 
specialization to a spherical particle in Poiseuille flow in a cylinder has been reported by Ishii & 
Hasimoto (1980). 

Utilizing the inertial radial velocity results of Ishii & Hasimoto (1980) as well as the 
particle-cylinder wall-effect tensors developed by Hirschfeld et al. (1984), this work incorporates 
fluid inertial effects and particle-capillary electrostatic interactions within the framework of the 
Brenner-Gaydos (1977) diffusive transport theory, yielding a better understanding of the lateral 
migration mechanisms in CHDC. 

ANALYSIS 

The goal of the Brenner & Gaydos (1977) theory is the modification of the Taylor-Aris theory 
of axial dispersion (Taylor 1953, 1954; Aris 1956) to include the effects of particle hydrodynamics 
and external forces on the mean axial velocity and dispersivity of the solute. The principal result 
of interest here is the expression for the mean particle axial velocity: 

f R°-a u:(r) e-e~°r dr 
< u : > =  o , [1] 

0 e'°-a e-E(')r dr 

where R0 is the capillary radius, a is the particle radius, u. is the local axial velocity of the particle 
and E is the dimensionless total potential experienced by the particle due to interactions with the 
capillary wall. There interactions may be divided into two categories: colloidal and hydrodynamic. 
The former, including electrostatic and van der Waals forces, are conservative forces that can be 
integrated to give potentials for use in [1]. Hydrodynamic forces, especially in systems dominated 
by viscous effects, are dissipative; it is not clear a priori whether such interactions are within the 
purview of the Brenner-Gaydos analysis. The work of Cox & Brenner (1968) and Ishii & Hasimoto 
(1980) shows that solvent inertia produces a lateral (i.e. radial) particle velocity that depends on 
radial position. Division by the particle's radial mobility gives an inertial force, and integration 
yields an inertial "potential" which, of course, is not a true potential. Nonetheless, a simple 
modification of the Brenner-Gaydos analysis demonstrates that the inertial "potential" may be 
included in the total potential of [1]. 

The original Brenner-Gaydos analysis assumes that the particle velocity has only an axial 
component. Instead, let the particle velocity be given by the vector sum 

u(r) = e,u,(r) + e:u:(r) [2] 

of the radial and axial velocity components u, and u... The new radial velocity term is carried 
through the Brenner-Gaydos development, finally appearing in the equation for the axisymmetric 
probability density f(r, z, t); f is the probability density that a particle is located within dr and dz 
of position (r, z) while within dt of time t. The equation f o r f i s  not actually solved; rather, Axis' 
(t956) method of moments is used to calculate <u:>. 

Defining the mth axial moment o f f ( r ,  z, t) through 

~ ( r , t ) = f ~  z ' f ( r , z , t ) d z  [3] 

the steady-state zeroth-order moment is found to be 

c { re°---  l dr'If,, [4] 
~0(r) = ~ exp - m  kT JM~.(r') A3 

in which c/2n is a normalization constant, E, is the non-inertial part of the total potential and M.  
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is the hydrodynamic mobility of particles perpendicular to the cylinder axis. The radial velocity, 
representing the hydrodynamic response of the particle to the inertial force exerted by the fluid, 
has been calculated for the sphere--cylinder geometry by Ishii & Hasimoto (1980), based on a 
general theory by Cox & Brenner (1968). The function M,_, as utilized by Brenner & Gaydos (1977), 
is related to the Stokes flow wall-effect tensor of Hirschfeld et al. (1984) through 

M.j_(r) = 1 - ( ~ )  W'l(r) 
6rr/~a ' [5] 

in which W is the tabulated wall-effect tensor and p is the solvent viscosity. Hirschfeld et al. (1984) 
relate the radial force to the radial velocity through 

u,(r) 
F~(r) = M=(r)' [6] 

in which the subscript i is a reminder that, in this case, the force is due to inertia via the radial 
velocity. The inertial "potential" is defined through 

1 f '  F~(r') dr ' ,  [71 E~(r) = k T  ,, 

where r* is the dimensionless radial position where the inertial force is zero; combining [4], [6] and 
[7] produces 

c [ (  ) i f  /a0(r)=~-~nexp - E~+Ei =~--~exp(-E), [8] 

as was found by Brenner & Gaydos (1977). Equation [1] then follows without any change from 
the original Brenner--Gaydos analysis. 

Calculation of the mean particle axial velocity requires specification of the local particle axial 
velocity, u.(r), any non-inertial potential that may be important and the inertial potential due to 
the fluid motion in the sphere-cylinder geometry. The local axial velocity of a particle in a cylinder 
is 

u:(r) = 2Vm 1 -- -- 7Vm). 2, [9] 

where v= is the average solvent axial velocity, ,;. = a/Ro and 7 is the wall-effect parameter, given 
by 

A I ,"I N, 

= 3(1 + ~ )  (core region) 7 

5 2  w llr  io , 

~2 1 0"743i~ ) ]  (1 - -  r : )  = 1-- + 
0.6376 -- 0-~2 ~n _r 1 

• a 

[lOa] 

[lOb] 

(very close to the wall), [10c] 

[1 la] 

[llb] 

as developed by Brenner (1966) and Goldman et al. (1967). 
If the ionic strength of the (aqueous) solvent phase is low, electrostatic repulsion is the dominant 

contribution to the non-inertial part of the potential. When ). ,~ 1, the interaction between the 
spherical particle and the surrounding capillary can be approximated by a sphere-plane interaction. 
The dimensionless electrostatic potential in this case, for a symmetric 1-1 electrolyte, is given by 
Bell et al. (1970) as 

4rre, eok T 
E,(r) = eZ a YI Y2 exp[-~c(R0-a - r)], 



776  H.J .  PLOEHN 

y., = y,_(~u_,, ah:), [1 lc] 

~e, = cO, 
k---T' [ild] 

in which E, is the relative permittivity of the solvent, Eo is the permittivity of vacuum, e is the 
electronic charge, 1/K is the Debye double-layer thickness, and ~t and ~: are the electrostatic 
surface potentials for the capillary and the particle. The Debye length, 1/~c, may be found from 

2e "-n 
e, EokT '  [12] 

where n is the number density of ionic species in a I-1 symmetric electrolyte. Ohshima et al. (1982) 
have derived an approximate surface charge density-surface potential relationship, 

I + 

a+=2 1-+ (_~)  + - ~ ~- ' -~ [ sinh , [13] 

°-< ='"°- W) J 
valid for spherical particles. If the surface charge density, as, is regarded as the controlling 
parameter, then [13] can be solved for ~ .  The particle function I"2 depends on the surface potential 
through 

(__~){ I 2 a x + l  (__~)]~)- t  Y_, = 8 tanh 1 + 1 (1 + ax) 2 tanh-" ,S , [14] 

also given by Ohsima et al. (1982). Y~ is calculated from [1 lb] if the capillary and particle surface 
potentials are assumed to be the same. 

The inertial potential, El, found from [5]-[7], depends on the radial velocity, u, the radial 
mobility, Mi ,  and the equilibrium radial position, r*. The radial velocity of neutrally buoyant 
particles involves complicated integrals that were evaluated numerically by Ishii & Hasimoto 
(1980); u,(r) is presented graphically, with r* found from the zero point of u,. Rather than 
duplicating these calculations, we utilize Ishii & Hasimoto's approximate expression 

in which selection of ~ = 3.56 and r* = 0.71 produce an accurate fit of their numerical results (see 
their figure 4a). Here p is the solvent density. The predicted value of r* is independent of particle 
size since their analysis is only valid for asymptotically small particles; r* = 0.71, as is shown below, 
leads to the prediction that large particles pass through the capillary more slowly than the solvent, 
on average. On the other hand, the tubular pinch results summarized by Walz & Grun (1973) 
indicate that r* varies with solvent flowrate and particle size for neutrally buoyant particles, and 
that the particles are eluted faster than an average unit of  solvent. In lieu of rigorous calculation 
of u, and r* for larger particle sizes, we must employ some empiricism in order to obtain at least 
qualitative agreement with experiment. The empirical relation 

r* = 0.67(1 - ),)q(Vm) [16] 

is proposed by Walz & Grun (1973) to correlate most of  the equilibrium radial position data from 
tubular pinch experiments. The flowrate function q (vm) is given by an exponential function adjusted 
to fit Ishii & Hasimoto's (1980) theoretical variation of r* with vm, shown in their figure 6a. 

For particle positions near the capillary wall, the radial velocity of Cox & Hsu (1977), 

5 a v ~ p  #2fl2(1 _/3)(22 - 73/3), [17] 
u,(r) = 72 # 

with/3 = 1 - r/Ro, is used in place of [15]. 
Equation [15] provides a convenient characteristic radial velocity ~7, = z ( a v ~ p / # ) .  Defining the 

dimensionless quantities 
r /gr 

=- U - -:-, m± - 6nizaM±, [18] 
j l ~ '  /2 r 
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[5]-[7] and [18] are combined to produce 

f,i ' 
where the P~clet number 

p~ = 6r~p~' ~a 3;.: 

k T  

represents the ratio of inertial to diffusive forces acting on the particle. 

[19] 

[20] 

RESULTS AND DISCUSSION 

Calibration curves, the standard means of presenting particle separation data from CHDC 
experiments, give the particle radius as a function of the retention ratio, which equals rm/(u.) .  
Values of the retention ratio < 1 imply that the particles pass through the capillary faster, on 
average, than the solvent. 

A comparison of experimental and theoretical calibration curves is shown in figure 1. The points 
are the experimental values of Noel et al. (1982) for a variety of particles (primarily pollens and 
polystyrene latices) carried by water with 1% ethylene glycol added as a surfactant. The solid curves 
are calculated from [1] using the local particle axial velocity, electrostatic potential and inertial 
potential described earlier. Evaluation of the Prclet number via [20] indicates that P6 ~ O(1) for 
1/am radius particles. The dependence of P6 on a 3 suggests that as particle size increases, there 
is a rapid transition from diffusion-controlled to inertia-controlled lateral migration, supporting 
the hypothesis of Noel et al. (1982) and McHugh (1984). Also, Noel et al. observed that there is 
a minimum solvent flowrate below which particle size resolution is poor, presumably due to 
insufficient separation forces. This behaviour is explained by the vm': dependence of P6 which 
produces a diffusion-inertia transition with increasing solvent velocity. 

Curve A of figure I is a theoretical calibration curve found using [16] for r*. Agreement for small 
particles is good, but for large particles, the experimental retention ratios are poorly predicted by 
the calculated values. This failure is certainly due to error in the calculation of the inertial radial 
velocity. The restrictions of the Cox-Brenner/Ishii-Hasimoto analysis must be carefully examined. 

Assuming that all of the particles in the experiments of Noel et al. (1982) have the same density 
as polystyrene, the solvent flowrates are such that Brenner's (1972) neutral buoyancy criterion 

U ~  ~ ,;.., [21] 
/Jm 

is satisfied for all particle sizes, although the sedimentation velocity 

Used = 2a2(pp - p)g 9/a [22] 

(with p~ as the particle density) is non-zero. The Cox-Brenner/Ishii-Hasimoto analysis requires 

Rep ,~ 2 ,~ 1 [23] 

with the particle Reynolds number 

R% = ausp [24] 
/x 

based on the relative velocity u, (the difference between the local undisturbed solvent velocity and 
the local particle axial velocity). The condition 2 ,~ 1 is easily satisfied in Noel et al.'s experiments, 
but, utilizing the greatest anticipated relative velocity, the condition Rep ,~ ~. is violated for large 
particles near the capillary wall. Consequently, there is a region in the flow where fluid inertia is 
as important as viscosity (the Oseen region). Thus the Ishii-Hasimoto inertial radial velocity is not 
strictly correct for large particles, and [15] and [16] are expected to fail at some point as particle 
size increases and fluid inertia becomes more than a perturbation in the creeping flow calculations. 

For large particles, the Pgclet number [20] indicates that inertial migration is the dominant lateral 
M.F. 13'6--I) 
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migration mechanism; as is illustrated below, large particles are essentially "locked in" at the radial 
position r* and are eluted at the same speed as solvent at that radial position. The form of the 
radial velocity, such as that of [15], becomes less relevant than the value of r*. Since there is no 
accurate expression for u, when R% '- 2, one might try to fit the calibration curve for large particles 
by retaining the form of [15] and modifying that of [16]. If an ad hoc parameter 6 is introduced, 
so that 

r* = 0.67(1 - 26)q(vm), [25] 

selection of 6 = 0.65 yields the calibration curve B of figure 1. This fit is probably not unique, but 
the exercise suggests the probability of a more complicated dependence of r* on 2 than has been 
previously found, either theoretically or experimentally. 

Another assumption in the use of the Brenner-Gaydos equation [1] is that the particle 
hydrodynamic behavior reaches a steady state. In terms of the Stokes particle diffusivity, 
D~ = kT/6~l~a, the criterion for steady-state behavior is 

D~t 
- -  ~ 1, [ 26 ]  
R0 

suggesting that particles must be in the capillary long enough to sample all radial positions. 
Reformulating this criterion in terms of the length of capillary necessary to assure steady-state 
behavior gives 

6~#aRgvm [27] 
Lreq = k T 

McHugh (1984) observes that L~eq is at least 2 orders of magnitude greater than the capillary length 
used by Noel et al. (1982). This criterion, though, is appropriate when diffusion is dominant. We 
define a characteristic inertial time 

R° [28] 
I i ~ ~ , 

22v~ap 
# 

where the denominator is the characteristic inertial radial velocity from [18]. The capillary length 
that assures steady-state behavior with respect to inertia, 

/~ [29] L r e q  - • 3 
J~ pU m 

is comparable to or less than the capillary lengths used by Noel et al. Although transient lateral 
migration certainly influences the theoretical retention ratio, the effect is probably not large enough 
to account for the difference between the experimental retention ratios for large particles and those 
of curve A in figure 1. 

Particle-particle interactions at finite concentrations also influence the lateral migration of 
particles, but no quantitative studies of the effect in CHDC are available. The particle concen- 
trations in the CHDC experiments of Noel et al. (1982) are unknown, but we presume that the 
experiments were not carried out at infinite dilution where the present analysis applies. Speculation 
on the consequences of concentration effects should be based on consideration of colloidal and 
hydrodynamic forces. In Noel et al.'s experiments, the use of ethylene glycol as a surfactant reduces 
particle aggregation and adsorption on the capillary wall; low ionic strength (I) also opposes 
aggregation, but the actual electrostatic conditions are not known. Particle hydrodynamic 
interactions may be most significant. As described in detail by Happel & Brenner (1983), an 
assemblage of particles has a lower resistance to flow than a single particle. Thus two or more 
interacting particles will have a lower relative velocity than a singlet, leading to a lower retention 
ratio. Since Brownian motion randomizes the positions of small particles, the decrease in retention 
ratio due to concentration effects is probably greater for large particles controlled by inertia. 

The general shape of the theoretical calibration curves can be rationalized by considering the 
individual contribution of each lateral migration mechanism. This comparison is shown in figure 
2. Curve A is the calibration curve for particles that are perfectly free to diffuse to any radial 
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Figure 1. Calibrat ion curves for the C H D C  system studied by Noel  et  al. (1982). The points are the 
experimental data of  Noel et al. for various pollens and polystyrene lattices carded by water  with 1% 
ethylene glycol added as a surfactant.  The solid curves are the calculated calibration curves f rom the 
present model. Curve A: r* calculated f rom [16]. Curve B: r* calculated from [25]. Relevant parameters  
include: R 0 = 254 ,am, v m = 0.1713 m/s,  I = 2 x 10 -7 M, a, = 10 t3 charges/era ' ,  p~ = 1.05 g/cm ~, T = 20-'C. 

position that their finite size permits; i.e. curve A shows only the effect of volume exclusion. As 
expected, the larger the particle, the faster it passes through the capillary relative to the solvent. 
The calibration curve of particles free to diffuse under the influence of the electrostatic potential 
is curve B. Electrostatic repulsion causes particles of all sizes to be further excluded from regions 
of slow solvent flow, speeding up the particles' passage through the capillary. Curve C is the 
calibration curve for diffusing particles under the influence of only the inertial potential. Large 
particles are essentially "locked in" at the equilibrium radial position and translate at the local 
particle axial velocity evaluated at r*, i.e. (uz} = u:(r*). This explanation is supported by the 
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Figure 2. Calibration curves highlighting the individual contributions of diffusion, electrostatics and fluid 
inertia to particle lateral migration. Curve A: diffusion with volume exclusion effect only. Curve B: 
diffusion under the influence of an electrostatic potential Curve C: diffusion under the influence of an 
inertial potential Curve D: particles translate at the solvent velocity evaluated at r*.  Curve E: total curve 

including the contributions of all mechanisms. Al l  parameters are the same as in figure l. 
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Figure 3. Calibration curves for three solvent ionic strengths, all other parameters the same as in figure 
1. Curves A - C  are for 1 = 10 -7, 10 -6 and 10 -s  M, respectively. 

calculation of curve D, the calibration curve of particles that travel at the solvent velocity evaluated 
at the equilibrium radial position. For small particles, [16] indicates that r*--,0.67 (neglecting the 
flowrate dependence for the moment). A simple calculation utilizing the Poiseuillian solvent 
velocity profile shows that vJu: (0.67) = 0.91, the limiting value of the retention ratio of curve D. 
For large particles, curves C and D are almost the same: the slight difference in retention ratio is 
due to the significant axial relative velocity of large particles. Returning to curve C, the Brownian 
motion of particles with radii < ~ 1 #m causes the particles to diffuse out of the inertial potential 
well into slower flow regions. The smallest particles, although somewhat affected by inertia, 
separate primarily due to the volume exclusion effect. The total curve including all effects is 
curve E. 

The variation of the theoretical calibration curve with respect to changes in several of the system 
parameters are shown in the next three figures. Figure 3 illustrates the effect of solvent ionic 
strength on particle separation. As expected, an increase in the ionic strength decreases the range 
and strength of the electrostatic repulsion; the smallest particles can then penetrate close to the wall 
and are separated due to the volume exclusion effect. Note that as ionic strength is increased, the 
retention ratio range in which both inertia and diffusion are important is expanded. The resolution 
of the elution peaks (i.e. the separability) of submicron particles can therefore be improved through 
the use of moderate ionic strength solvents. However, ionic strength has little effect on the elution 
of large particles, consistent with the conclusions of Brough et al. (1981). 

The effect of variation of the capillary radius at constant ionic strength is illustrated in figure 
4. As the capillary radius is made smaller, ;. increases and, through [16], r* decreases. Particles 
focused at r* due to the inertial potential are shifted towards the capillary centerline and move 
faster relative to the solvent. An interesting effect is observed in narrow capillaries with low solvent 
ionic strengths (curve A in figure 4): the calibration curve is no longer monotonic. In general, as 
the particle radius decreases, the particles begin to diffuse out of the inertial potential well located 
at r*. Particles diffuse into both faster and slower streamlines, but the slower streamlines are 
weighted more heavily due to the factor r in the integrals of [1]. This explains the general increase 
of retention ratio with decreasing particle size found in most calibration curves. For the separation 
described by curve A in figure 4, however, the retention ratio increases only until the particle radius 
falls to about 0.3/~m. For smaller particles, increased Brownian motion causes particles to sample 
the faster streamlines, but the electrostatic potential excludes particles from the slower streamlines. 
The retention ratio therefore begins to increase with decreasing particle size. This behavior is only 
noticeable in smaller capillaries in which the electrostatic repulsion dominates a larger fraction of 
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Figure 4. Calibration curves for four capillary radii (i.d.), all other parameters the same as in figure 1. 
Curves A - D  are for Ro = 125, 200, 250 and 500 #m,  respectively. 

the streamlines. As diffusion becomes more important (a ,~0.2#m, P6 ~0.1) all of the fast 
streamlines are sampled, and smaller particles begin to penetrate further into the slow region of 
flow. The usual separation behavior for small particles is then observed. 

Finally, the effect of changes in the solvent flowrate on the calibration curve is shown in figure 
5. For small particles the inertial force is weak and flowrate has little effect on the separation 
characteristics. The separation of large particles depends weakly on flowrate, through the value of 
r* given by [16]. The effect of flowrate variation is most pronounced for particle sizes in the 
transition region between inertially- and diffusion-controlled separation. This transition occurs at 
P6 ~ O(1); since P6 depends on the square of the mean solvent velocity, the flowrate has a strong 
influence on the location of the transition. At constant particle radius there appears to be critical 
flowrate above which particles are inertially focused at the equilibrium radial position, consistent 
with experimental observations. For 1/~m particles, the flowrates of curves A and B produce 
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Figure 5. Calibration curves for five solvent fiowrates, all other parameters  the same as in figure I. 
Curves A - E  are for v= = 0.01, 0.05, 0.25, 1.25 and 5.0t)m/s, respectively. 
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insufficient inertial force to focus the particles at r*. Also, as noted earlier, the flat portion of the 
calibration curve is an indication of enhanced separability. Adjustment of the flowrate, solvent 
ionic strength or capillary radius can be used to vary the location of the transition region, 
improving separability in specific particle size ranges. 

CONCLUSION 

The results presented here have important implications with regard to the use of CHDC as an 
analytical tool. First, electrostatic forces play a larger role in capillary particle separations (at least 
in aqueous systems) than had previously been anticipated. Electrostatic forces modify the diffusive 
lateral migration of small particles (a < 1 #m) if the solvent has a low ionic strength. Unusual 
separation behavior is observed when the capillary radius is small or the solvent flowrate is very 
low, as evidenced by the non-monotonic calibration curves. These results highlight the delicate 
balance between diffusion and inertial force, especially in the transition regime, and the underlying 
complexity of particle-capillary hydrodynamics and electrostatics. 

An important conclusion is that the separation of particle mixtures in narrow size ranges can 
be achieved through careful choice of experimental conditions. Flat sections of calibration curves 
produce large differences in retention ratio for particles of only slightly different size. Such flat 
sections coincide with the transition from inertia- to diffusion-controlled lateral migration. Proper 
choice of ionic strength can result in a broad transition region leading to strong separation of 
particles in a narrow size range. The particular size range can be chosen through variation of the 
solvent flowrate. Careful selection of the capillary radius in conjunction with other system 
parameters prevents non-monotonic separation behavior. 

Poor quantitative agreement between the theoretical and experimental retention ratios for large 
particles is a consequence of an inaccurate model of inertial lateral migration for the conditions 
considered. We have essentially extrapolated the analysis of Ishii & Hasimoto (1980) from 
asymptotically small particles at infinite dilution to the regime of finite particle Reynolds numbers 
and concentrations. The error in the calculation is most apparent in the predicted values of r* 
which determine the elution speed of large, inertially dominated particles. Ishii & Hasimoto's value 
of r* = 0.71 implies that large particles pass through the capillary more  slowly than an average unit 
of solvent, a result at odds with most tubular pinch data. Walz & Grun's (1973) empirical 
correlation of published r* data is introduced so that particles are eluted faster than the solvent, 
in qualitative agreement with experiment. An additional empirical parameter produces a fit of Noel 
et al.'s (1982) experimental calibration curve, but the matching may not be unique and is not as 
yet supported by any theoretical arguments. The point is that a better quantitative prediction of 
large particle separation by CHDC requires an analysis of inertial lateral migration valid at larger 
particle Reynolds numbers and possibly at finite concentrations. 

Further CHDC experiments are warranted, as well. Measurement of the retention ratios of large 
particles of known size can be used to determine the equilibrium radial position of the translating 
particles. This idea, briefly discussed by Noel et al. (1982), is an improvement over previous tubular 
pinch experiments (Segr6 & Silberberg 1962a, b; Jeffrey & Peterson 1965; Tachibana 1973) which 
relied upon optical measurement of particle positions. Other techniques, such as flow-field 
fractionation (FFF), provide a comparable means of analyzing the inertial force as well as other 
colloidal forces. For example, Caldwell et al. (1979) observe flowrate-dependent retention ratios 
in their sedimentation FFF experiments. They speculate that such behavior is due to a lift (i.e. 
inertial) force in the particle-plane flow system. A more complete theoretical analysis of FFF, 
performed by Prieve (1983), considers axial dispersion in both the long retention time limit 
(equivalent to the Brenner-Gaydos analysis) and the short retention time (non-Brownian) limit. 
Prieve's analysis in the latter limit may be more relevant to CHDC experiments than the approach 
used here, at least for the characterization of submicron sized particles. For larger particles, the 
retention ratio depends critically on the location of the equilibrium radial position, and so precise 
characterization of the functional dependence of r* upon particle size and solvent flowrate is a 
requirement for complete, quantitative understanding of inertial effects in CHDC. 
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